

GHB Consult GmbH · Moosstraße 7 · 82319 Starnberg

BAUGRUND GRÜNDUNG GRUNDWASSER ALTLAST BODENMECH, LABOR

Ingenieurgeologisches Gutachten

Projekt-Nr.: 170417

Bauvorhaben: Bebauungsplan "Südlich der Alten Ettaler Straße"

82496 Oberau

Fl.-Nr. 298, 298/12 + 332/4, Gemarkung Oberau

Auffraggeber: Gemeinde Oberau

Schmiedeweg 10 82496 Oberau

Umfang: 16 Seiten, 3 Tabellen und 9 Anlagen

Datum: 21.10.2017

Ausführung: GHB Consult GmbH

Dipl.-Geol. N. Kampik

Moosstraße 7 82319 Starnberg

Bearbeiter: T. Brandhoff, M.Sc. Ing.-Geol.

Projektleitung: N. Kampik, Dipl.-Geol. BDG

Inhaltsverzeichnis

1	Anlass	3
2	Untergrundverhältnisse	4
2.1	Geologie	
2.2	Schichtenfolge und Lagerungsdichte des Bodens	4
2.3	Grund- und Schichtwasser	6
2.4	Bodenklassen und Homogenbereiche nach DIN 18 300 alt und neu	6
2.5	Bodenkennwerte	8
3	Gründungsempfehlungen	8
3.1	Baugrube	9
3.2	Gründung mit Unterkellerung	9
3.3	Gründung ohne Unterkellerung	10
3.3.1	Bodenaustausch	
3.3.2	Tiefgründung	10
3.4	Weitere bautechnische Hinweise	11
4	Straßenaufbau nach Straßenbaurichtlinien	12
4.1	Verdichtung des Straßenplanums und der Kiestragschicht	13
4.2	Fazit Straßenaufbau	
5	Versickerung von Niederschlagswasser	14
6	7.usammenfassuna	15

<u>Anlagen</u>

	••	
1.1	Ubersichtslageplan.	. unmaßstäblich

- 1.2 Lageplan mit Untersuchungsspunkten, M 1:1.000
- 2.1 Geotechnisches Baugrundprofil A-A⁺, HM 1:50, LM unmaßstäblich
- 3.1-6 Bodenprofile der Bohrsondierungen BS 1-6, M 1:50
- 4.1-4 Rammdiagramme der Rammsondierungen DPH 1-4, M 1:50
- 5.1-3 Siebanalysen nach DIN 18 123
- 6.1-3 Konsistenzgrenzenbestimmungen nach DIN 18 122
- 7.1-2 Versickerungsberechnungen
- 8 Punktuelle Freimessung bezüglich Kampfmittel
- 9.1-2 Fotodokumentation

<u>Unterlagen</u>

/U1/ Lageplan mit eingetragenen Flächen, Stand unbekannt

Seite 3 (von 16 Seiten)

1 Anlass

Auf dem Grundstück südlich der Ettaler Straße (Fl.-Nr. 298) in Oberau ist eine neue gewerbliche Baufläche mit 4.888,8 m² geplant. Die Lage des Bauvorhabens ist auf dem Übersichtslageplan der Anlage 1.1 markiert. Wir wurden durch die Gemeinde Oberau mit der Erstellung eines ingenieurgeologischen Baugrundgutachtens für mögliche Neubauten (Fl.-Nr. 298) sowie die öffentliche Verkehrsfläche (Fl.-Nr. 298/4 und 332/4) beauftragt.

Gemäß den eingemessenen Untersuchungspunkten hat das Gelände eine Höhenlage von ca. 678,2 mNN im Südosten bis 683,9 mNN im Nordwesten (Differenz 5,7 m).

Da es sich um eine Untersuchung für den Bebauungsplan handelt, gibt es noch keine Planunterlagen für mögliche Neubauten. Wir behandeln somit die Gründung mit und ohne Unterkellerung sowie den Straßenbau und die Versickerungsmöglichkeiten.

- Baugrunduntersuchung

Zur Baugrunduntersuchung wurden am 16. und 17.05.2017 an den im Lageplan der Anlage 1.2 bezeichneten Stellen insgesamt

- 6 Kleinbohrungen (BS 1-6) bis 3,0 m bzw. 7,0 m unter OK Gelände sowie
- 4 schwere Rammsondierungen (DPH 1-4) bis 2,5 m bzw. 6,1 m unter OK Gelände abgeteuft.

Gebohrt wurde mit Kern-Ø 60-80 mm. Mit der Schappe wird ein Bohrkern entsprechend der Schichtenfolge des Untergrundes gewonnen. Bei der Rammsondierung wird eine konische Rammspitze mit definierter Energie in den Untergrund gerammt. Gemessen werden die Schlagzahlwerte N10 entsprechend der Anzahl der Rammschläge je 10 cm Eindringtiefe, die in das Rammdiagramm eingetragen werden. Anhand der Schlagzahlwerte können Rückschlüsse auf die Lagerungsdichte des Bodens gezogen werden.

Die Aufschlusspunkte wurden vorab wegen möglicher, nicht entdeckter Kampfmittel des 2. Weltkriegs geophysikalisch freigegeben (Anlage 8). Alle Bohransatzpunkte wurden nach Lage und Höhe mit Bezug auf mNN mittels GPS eingemessen.

Die Ansprache der aufgeschlossenen Bodenschichten erfolgte nach DIN 4022-1 (Anlage 3). Die Ergebnisse der Bodenuntersuchungen sind im geotechnischen Baugrundprofil A-A in Anlage 2 als Bodenprofil nach DIN 4023 mit Angabe der Bodenklassen nach DIN 18300 und der Bodengruppen nach DIN 18196 sowie als Rammdiagramm nach EN ISO 22476-2 (Anlage 4) dargestellt.

Zur Klassifizierung des Bodens wurden Proben entnommen und in unserem bodenmechanischen Labor untersucht. Die Ergebnisse sind in den Anlagen 5 und 6 des Gutachtens dokumentiert.

Seite 4 (von 16 Seiten)

Zur Festlegung der Mindestanforderungen an Umfang und Qualität der geotechnischen Untersuchungen, Berechnungen und der Bauüberwachung wurde in Abhängigkeit von der Schwierigkeit der baulichen Anlage und des Baugrunds die **geotechnische Kategorie GK 2** (mittlerer Schwierigkeitsgrad) gewählt.

2 Untergrundverhältnisse

2.1 Geologie

Die geologische Auffaltung der Alpen als mehrstufiger Prozess ist heute prägender Teil des Landschaftsbildes in Oberau. Diese Auffaltung begann vor etwa 135 Millionen Jahren an der Wende von der Jura- zur Kreidezeit und fand ihren Abschluss vor etwa 30 bis 35 Millionen Jahren im Tertiär. Die heutige Gebirgsform erhielten die Alpen durch Erosion, vor allem durch die abtragende Tätigkeit der Gletscher während der Eiszeiten.

Die Schichtenfolge im Bereich des Bauvorhabens ist geprägt durch tiefreichende jungholozäne, fluviatile Ablagerungen. Die Sedimente sind durch die stark wechselnden Ablagerungsbedingungen des alternierenden Gießenbaches gekennzeichnet. Je nach Strömungsenergie kam es lokal auch zu stillwasserfaziellen Ablagerungen, die durch Schluff- und Sandlinsen im quartären Kies oder durch Rollkieslagen (äußerst gut durchlässige Kiese mit sehr wenig Feinkorn) dokumentiert werden.

Unterlagert werden die Talfüllungen von Moränenmaterial. Der tiefere Untergrund wird aus Hauptdolomit, wie die umliegenden Berge, aufgebaut.

2.2 Schichtenfolge und Lagerungsdichte des Bodens

Die festgestellte Schichtenfolge ist in dem geotechnischen Baugrundprofil A-A' auf der Anlage 2 dargestellt. Dort sind

- die Bodenprofile mit Angabe der Bodenklassen nach DIN 18300 und der Bodengruppen nach DIN 18196 sowie
- die Rammdiagramme der schweren Rammsondierungen mit der erforderlichen Anzahl an Rammschlägen je 10 cm Eindringtiefe dargestellt.

Die Schnittführung ist auf dem Lageplan der Anlage 1.2 eingetragen. Die Schichtgrenzen zwischen den Aufschlüssen sind vermutet.

Seite 5 (von 16 Seiten)

- Bodenprofil

Im Bereich der geplanten, gewerblichen Baufläche wurde in den Bohrungen <u>BS 1-4</u> zuoberst ein 20–30 cm starker Oberboden festgestellt (im geotechnischen Profil der Anlage 2: Oberboden = **braun**). Unterhalb des Oberbodens wurde bis zur Endtiefe von 5,9–7,0 m ein sandiger, sehr schwach bis schwach schluffiger, lokal stark schluffiger Kies (**gelb**) erbohrt. Der Kies kann entsprechend der Feldansprache und den bodenmechanischen Laborversuchen der Bodengruppe GW bis GU_ zugeordnet werden (siehe hierzu die Siebanalysen der Anlage 5.1-3). Erfahrungsgemäß ist in den Bachschuttablagerungen des Gießenbachtales mit einem <u>Steinanteil von ca. 20-40 % zu rechnen</u>, der aber bohrbedingt (DN 60-80) nicht in der Schappe bleibt, sondern seitlich weggedrückt oder während des Bohrvorgangs zerkleinert wird. Zudem wurde in der Bohrung BS 3 direkt unter dem Oberboden bis 0,6 m Tiefe und in BS 4 von 0,8–1,3 m Tiefe ein kiesiger bis stark kiesiger, sandiger, toniger Schluff (**grün**) mit lokal organischen Beimengungen aufgeschlossen. Dieser Boden kann den Bodengruppen GU_ bis UL zugeordnet werden und kann als weich bezeichnet werden (siehe hierzu auch die Konsistenzgrenzenbestimmungen der Anlage 6). Es muss ablagerungsbedingt im ganzen Untersuchungsgebiet mit Sandund Schlufflinsen gerechnet werden.

Die Bohrungen <u>BS 5 und BS 6</u> wurden in der geplanten, öffentlichen Verkehrsfläche abgeteuft. Hier wurde zuoberst eine Auffüllung aus einem sehr schwach bis stark schluffigen Kies bis 0,5 m bzw. 0,6 m Tiefe vorgefunden. Im aufgefüllten Kies der Bohrung BS 5 wurden zudem schwarze Partikel festgestellt. Darunter folgt in beiden Bohrungen ein vermutlich aufgefüllter, kiesiger, sandiger Schluff mit lokal schwach organischen Beimengungen. Ab 1,5–1,8 m Tiefe und bis zur Bohrendtiefe von 3,0 m folgt in beiden Bohrungen, wie bereits oben beschrieben, ein sandiger, sehr schwach bis schwach schluffiger Kies.

- Lagerungsdichte

Die Rammsondierungen weisen im Oberboden nur sehr geringe Eindringwiderstände von $N_{10} = 1$ auf, was einer weichen Konsistenz entspricht.

Unter dem Oberboden wurden in der Rammsondierung DPH 1 bis 4,6 m und in den Sondierungen DPH 2–4 bis 1,2–1,8 m Tiefe nur geringe Rammwiderstände mit N_{10} = 1-5 gemessen. Dies entspricht einem weich- bis steifkonsistenten Schluff. Lokal kann auch ein schluffiger Kies mit einer lockeren Lagerung vorliegen.

Im darunter folgenden, mitteldicht bis sehr dicht gelagerten Kies war nach maximal 1,5 m Sondierstrecke (im Kies) kein Weiterkommen mehr möglich. Die Schlagzahlen schwanken im Kies zwischen 7 und 97 Schlägen pro 10 cm Eindringtiefe.

Seite 6 (von 16 Seiten)

2.3 Grund- und Schichtwasser

Grund- bzw. Schichtwasser wurde in den Bohrungen nicht angetroffen. In einer direkt südlich gelegen Grundwassermessstelle wurde am 16.05.2017 ein Wasserspiegel bei 27,16 m Tiefe eingemessen. Dies entspricht ca. 653,5 mNN.

Anhand Erfahrungswerten aus der Umgebung muss mit starken Grundwasserschwankungen und einem maximalen Grundwasserstand von etwa 660,0 mNN gerechnet werden.

Das Grundwasser liegt jedoch immer noch ca. 20 m unter OK Gelände und ist für das Bauvorhaben somit nicht relevant.

Eine Abfrage über den Informationsdienst überschwemmungsgefährdete Gebiete des Landesamts für Umwelt (LfU) erbrachte, dass das Baufeld nicht im Bereich eines extremen Hochwasserereignisses liegt. Die Fläche ist jedoch als wassersensibel ausgewiesen. Diese Standorte werden vom Wasser beeinflusst. Nutzungen können hier beeinträchtigt werden durch zeitweise Oberflächenwasserabfluss bedingt durch bindige Böden (Oberboden). Dieses Phänomen dürfte nach der Bebauung nicht mehr vorhanden sein, da der Oberboden fast überall ausgetauscht wird.

- Bautechnische Folgerungen

Bei der Abdichtung der erdberührten Bauwerksteile ist zu unterscheiden:

eine Abdichtung nach DIN 18195 Teil 4 wäre aus unserer Sicht unter der Voraussetzung möglich, dass im Arbeitsraum fachgerecht eine <u>Drainage nach DIN 4095</u> verlegt wird und zur Verfüllung der Arbeitsräume ausschließlich Kiessande der Bodengruppe GW verwendet werden. Das gesammelte Drainagewasser ist in einem Sickerschacht, der in die Kiese zu führen ist, einzuleiten.

Bei der Gründung auf einem Bodenaustausch bis in den Kies oder der flächigen Gründung im Kies darf auf eine Drainage verzichtet werden.

2.4 Bodenklassen und Homogenbereiche nach DIN 18 300 alt und neu

Im Jahr 2015 wurde die Umstellung der DIN 18 300 beschlossen. Die neue DIN heißt jetzt DIN 18 300:2015-08, bei der die Böden nach Homogenbereichen eingeteilt werden. Hierbei werden die "alten" Charakteristika wie Lösen, Laden und Fördern mit den "neuen" Charakteristika des Behandelns, Einbauens und Verdichtens vereint. In Tabelle 1 werden die Homogenbereiche dargestellt.

Bodenart	Bodenklassen nach DIN 18 300 (alt)	Homogenbereiche für Erdarbeiten nach DIN 18 300:2015-08 (neu)
Oberboden	Oberboden, Klasse 1	Α
Schluff , kiesig bis stark kiesig, sandig, tonig, lok.	Mittelschwer lösbarer Bo-	В
org. Beimengungen	den, Klasse 4	В
Kies, sandig, sehr schwach bis schwach schluf-	Leicht bis mittelschwer	C
fig, lokal stark schluffig	lösbarer Boden, Klasse 3-4	
Dito - mit höchstens 30 Gew% Steine von > 63	Mittelschwer lösbarer Bo-	C
mm bis 0,01 m³ Rauminhalt (Kugel von ca. 0,3 Ø)	den, Klasse 4	C
Dito - mit mehr als 30 Gew% Steine von > 63 mm	Schwer lösbarer Boden,	<u> </u>
bis 0,01 m³ Rauminhalt (Kugel von ca. 0,3 Ø)	Klasse 5	

Tab 1. Bodenklassen nach DIN 18 300, Homogenbereiche nach DIN 18 300:2015-08

Homogenbereich A: Oberboden, der bei der Errichtung und Änderung baulicher Anlagen sowie bei wesentlichen anderen Veränderungen der Erdoberfläche ausgehoben wird, ist in nutzbarem Zustand zu erhalten und vor Vernichtung oder Vergeudung zu schützen. Der Oberboden stellt aufgrund der organischen Bestandteile eine Herausforderung bei der Entsorgung dar und sollte auf der Baustelle verbleiben und bei der Landschaftsgestaltung wiederverwendet werden.

Falls der Oberboden nicht verwendet werden kann, sollte er als Haufwerk aufgehaldet und nach einer entsprechenden Analytik einer geordneten Verwertung zugeführt werden. In Ausschreibungen zu Erdarbeiten sollten, auf der sicheren Seite liegend, neben den Zuordnungsklassen Z 0 auch die Zuordnungsklassen Z 1.1, Z 1.2 sowie Z 2 nach LVGBT (Leitfaden zur Verfüllung in Gruben, Brüchen und Tagebauen) mit TOC (gesamter organischer Kohlenstoff – englisch: total organic carbon) und DOC (gelöster organisch gebundener Kohlenstoff – englisch: dissolved organic carbon) berücksichtigt werden.

Homogenbereich B: <u>Schluff</u> muss aufgrund der überwiegend weichen Konsistenz und mangelnden geotechnischen Verwendungsmöglichkeiten entsorgt werden, da der Einsatz im qualifizierten Erdbau nicht möglich ist.

Homogenbereich C: Der Kies liegt entsprechend seiner Genese in gebänderter Lagerung vor, wobei sich die Kornzusammensetzung horizontal abwechselt. Die Lösbarkeit ist entsprechend Bodenklasse 3 als leicht lösbarer bis Bodenklasse 5 als schwer lösbarer Boden zu beurteilen. Erfahrungsgemäß ist in den Bachschuttablagerungen des Gießenbachtales mit einem Steinanteil von ca. 20–40 % zu rechnen Insgesamt sind die angetroffenen Kiessande aus geotechnischer Sicht zum Wiedereinbau geeignet, wenn der bindige Anteil (Schluff und Ton) bei ≤ 5 Gew.-% liegt, also Frostschutzkiesqualität besitzt. Der wiedereinzubauende Kies sollte vor Witterung geschützt (abgedeckt mit einer Folie) gelagert werden.

2.5 Bodenkennwerte

Für anstehenden Böden dürfen die mittleren Bodenkennwerte der Tab. 2 abgeschätzt werden:

Bodenkennwerte	Schluff, kiesig bis stark kiesig, sandig, tonig, lok. org. Beimengungen weich- bis steifkonsistent	Kies, sandig, sehr schwach bis schwach schluffig, lokal stark schluffig mitteldicht bis sehr dicht gelagert
Wichte kN/m³	19	21-22
Reibungswinkel Grad	22,5	37,5-40,0
Kohäsion c' kN/m²	5	0
Steifezahl Es (Erstbel.) MN/m²	4-10	80-120
Homogenbereich	В	С
Bodengruppe	UL, TL, GU_	GW, GU, GU_
Frostempfindlichkeit	F3	F1-F3

Tab 2. Bodenkennwerte

3 Gründungsempfehlungen

Aus den vorliegenden Untersuchungsergebnissen kann die folgende Bestandssituation abgeleitet werden:

- Im betreffenden Gebiet steht tiefreichend Kies an. Bei den Bohrungen wurde Kies mitteldichter bis sehr dichter Lagerung angetroffen.
- Es können Sand- und Schlufflagen zwischengeschaltet sein, die ausgetauscht oder überbrückt werden müssen. Lokal (DPH 1) reichen diese bis 4,6 m Tiefe.
- Der Kies stellt einen gut tragfähigen und wenig setzungsempfindlichen Bau- und Untergrund für die geplanten Bauwerke dar.
- Die Gründungssohle liegt weit über dem angetroffenen Grundwasserstand.
- Bei den vorliegenden Verhältnissen können die Gebäude auf Streifen- bzw. Einzelfundamenten oder auf einer elastisch gebetteten Bodenplatte gegründet werden. Je nach Gründungstiefe und Untergrund kann auch eine Tiefgründung in Frage kommen.

Gemäß DIN 1998-1/NA:2011-01 liegt das Projektgebiet innerhalb der **Erdbebenzone 1**.

Nach DIN EN 1990:2010-12 und DIN 1054: 2010-12 sind bei der Planung von Gründungsmaßnahmen Bemessungssituationen (BS-P, BS-T, BS-A und BS-E) wichtig und sollten klassifiziert werden. Hier haben wir es mit vorübergehenden Situationen <u>BS-T</u> (Transient Situations) und <u>BS-P</u> (Persistent Situations) zu tun, die sich auf zeitlich gegrenzte Zustände beziehen, wie Bauzustände bei der Herstellung des Bauwerks und der Baugrubenkonstruktionen. Nach Eurocode EC 7 (Tab. A 2.1, 2.2 und 2.3) wird je nach Bemessungssituation bei Teilsicherheitswerten für Einwirkungen und Beanspruchungen bei Nachweisen differenziert.

3.1 Baugrube

Bei einfach unterkellerten Gebäuden wird die Baugrube wird ca. 3,5 m tief und kann frei abgeböscht werden. Der Böschungswinkel sollte in den Schluffen und Kiesen bei 45° belassen werden. Zur Erstellung der Baugrube sind DIN 4124 und 4123 zu beachten. Auf ausreichende Mindestabstand von 2 m bei der Lasteinleitung im Bereich der Böschungen (Lagerplatz, Betonmischer, Kranstellplatz) ist zu achten. Ist aus Platzgründen keine Böschung möglich, könnte zur Baugrubensicherung ein Bohlträgerverbau (Berliner Verbau) erfolgen.

3.2 Gründung mit Unterkellerung

Bei einer Gründung mit Unterkellerung sollte der gründungsfähige Kies angetroffen werden. Sollten weiche Bereiche (kiesiger Schluff) anstehen, so sind diese zu entfernen und mit einem sandigen Kies der Bodengruppe GW zu ersetzen. Das Aushubplanum ist gut nachzuverdichten. Wir empfehlen auf dem Baufeld leichte Rammsondierungen oder Baggerschürfe, um sicherzugehen, dass keine schluffigen Einlagerungen unter dem Gründungsplanum vorhanden sind. Die Schürfe müssen nach der Herstellung wieder optimal verdichtet werden. Hier eignet sich am besten ein Baggeranbaurüttler. Auf Gründungssohle ist eine Proctordichte $D_{Pr} > 100~\%$ nachzuweisen (z.B. $Ev_2 \ge 100~MN/m^2$). Bei dem dynamischen Plattendruckversuch sollte ein $Ev_D > 50~MN/m^2$ erreicht werden.

Für die Bemessungswerte des Sohldruckwiderstands $\sigma_{R,d}$ können folgende Werte angenommen werden:

Fundament-einbin- detiefe	Bemessungswerte σ _{R, d} des Sohlwiderstands kN/m²					
	0,5 m	1,0 m	1,5 m	2,0 m	2,5 m	3,0 m
0,5 m	280	420	460	390	350	310
1,0 m	380	520	500	430	380	340
1,5 m	480	620	550	480	410	360
2,0 m	560	700	590	500	430	390

<u>Tab. 3: Bemessungswerte</u>

Für Einzelfundamente mit Seitenabmessungen a/b < 2 können die Werte der Tab. 3 um 20 % erhöht werden. Die Angaben gelten für die lotrechte und mittige Belastung der Fundamente. Zur Gewährleistung der Sicherheit gegen Grundbruch sind Mindesteinbindetiefen der Fundamente von 0,5 m (ab OK Fußboden) einzuhalten.

Seite 10 (von 16 Seiten)

- Bodenplatte

Bei der Gründung auf einer elastisch gebetteten Bodenplatte können die mittleren flächigen Bemessungswerte des Sohldruckwiderstands mit $\sigma_{R,\,d} \leq 200 \, kN/m^2$ und in den randlichen Spitzen mit $\sigma_{R,\,d} \leq 250 \, kN/m^2$ angesetzt werden.

Für die Bemessung der Bodenplatte nach dem Bettungsmodulverfahren kann die Bettungszahl mit $ks \approx 35 \text{ MN/m}^3$ angesetzt werden.

- Setzungen

Die Setzungen werden wesentlich von der Beschaffenheit des unter der Gründungssohle anstehenden Bodens sowie der Qualität der Erdarbeiten abhängen. Es muss mit lastabhängigen Setzungsbeträgen von s \sim 1,0-1,5 cm gerechnet werden.

3.3 Gründung ohne Unterkellerung

Bei einer Gründung ohne Unterkellerung kommen zwei Varianten in Frage:

- Bodenaustausch
- Tiefgründung (z.B. Brunnengründung oder duktile Rammpfähle)

3.3.1 Bodenaustausch

Bei einer Gründung auf einem Bodenaustausch müsste der weich- bis steifkonsistente Schluff komplett durchfahren werden. In den meisten Bereichen wurde der Kies nach maximal 1,8 m Tiefe angetroffen. Die Bemessungswerte können beim Bodenaustausch wie in Kap. 3.2 angenommen werden.

Wenn der bindige Boden verbleiben soll, müssten Setzungsberechnungen durchgeführt werden, um festzustellen wie mächtig der Bodenaustausch bei dem Anforderungsprofil (Lasten) mindestens sein muss.

3.3.2 Tiefgründung

Bei den vorliegenden Gegebenheiten wäre, besonders im Bereich der Rammsondierung DPH 1, eine Tiefgründung eine geeignete Gründungsvariante. In Frage käme beispielsweise eine Brunnen- oder eine duktile Rammpfahlgründung.

Seite 11 (von 16 Seiten)

- Brunnengründung

Bei einer Gründung auf Brunnenringen ist zunächst der Aushub bis auf das jeweilige Niveau der UK Bodenplatte zu führen. Die Gründung kann dann mit Brunnenringen in den dicht gelagerten Kiesen erfolgen. Dazu ist der Aushub im Schutz des Brunnenrings mit einem Mehrschalengreifer bis zu einer lastabhängigen statisch zu bestimmenden Mindesteinbindetiefe von voraussichtlich 0,3 m auszuführen. Der Brunnenring muss dabei fortlaufend mit dem Aushub abgesenkt werden, um den Nachfall zu verhindern und eine kraftschlüssige Einbindung zu ermöglichen. Anschließend sollte der Brunnenring mit Magerbeton verfüllt werden.

Bei Brunnendurchmesser DN 1500 kann ein mittlerer flächige Sohldruckwiderstand von $\sigma_{R,d} \leq 450 \text{ kN/m}^2$ im dicht gelagerten Kies abgetragen werden.

- Rammpfahlgründung

Bei der Rammpfahlgründung werden mit einem Bagger und Anbauhammer Eisenrohre in den Boden geschlagen, bis kein Weiterkommen mehr möglich ist.

Die Druckbelastung von Rammpfählen hängt bei der Vielzahl der möglichen Pfahlarten (Stahlbeton, Stahlrohr, duktile Gussrohre) maßgeblich vom verwendeten Pfahl und von der Einbindung in den tragfähigen Untergrund ab. Fertigpfahlrammsysteme aus duktilem Gusseisen kommen entweder verpresst oder unverpresst mit Durchmessern von 118 bis 170 mm zum Einsatz. Üblicherweise werden die vorgefertigten Elemente in 2–4 Meter Segmenten geliefert und können auf der Baustelle je nach erforderlicher Rammtiefe zusammengesetzt werden. Durch das Zusammenspiel von stumpfen Pfahlschuh und Betonverpressung kann ein Aufstandspfahl, der den Untergrund konsolidiert und den Spitzendruck optimal verstärkt entstehen. Die Verbindung zum Gebäudefundament geschieht über eine Lastaufnahmeplatte.

Als Bruchwert q_{SK} der Pfahlmantelreibung kann bei den dichten Kiesen mit **280 kN/m²** kalkuliert werden. Dieses Verfahren bietet sich gut an, da der gründungsfähige Horizont mittels duktilen Rammpfählen gut verfolgt werden kann.

3.4 Weitere bautechnische Hinweise

- Verfüllung des Arbeitsraums

Zur Verfüllung des Arbeitsraums ist ein gut wasserdurchlässiges, gemischtkörniges Material (Bodengruppe GW) zu verwenden und lagenweise (d = 30 cm) sorgfältig und fachgerecht einzubauen. Es sollte eine optimale Verdichtung erreicht werden. Als Nachweis der fachgerechten Verdichtung ist ein Verformungsmodul E_{V2} von \geq 100 MN/m² nachzuweisen (bei dynamischen Plattendruckversuchen E_{VD} von \geq 50 MN/m²). Der Arbeitsraum kann auch mittels Rammsondierungen überprüft werden ($N_{10} \geq 15$ bei der schweren Rammsonde).

- Kranstandplatz

Die Gründung kann je nach Untergrund auf einem intensiv nachverdichteten Kiesplanum oder auf Brunnenringen bzw. duktilen Rammpfählen erfolgen. Zur Sicherheit sollten leichte Rammsondierungen ausgeführt werden, damit nicht ein Fuß auf einem weichen Lehm steht und der andere auf dichtem Kies.

- Winterbaustelle

Mit dem Thema Frost im Baugrund sollte wie folgt umgegangen werden:

- Zum Schutz vor Frost sollte beim Aushub eine Schutzschicht von 70 cm auf der Gründungssohle belassen werden.
- Falls die Temperaturen nicht unter dem Gefrierpunkt liegen, müssen die Fundamentsohlen nach dem Verdichten mittels Sauberkeitsschicht versiegelt werden.
- Es darf nicht auf gefrorenen Untergrund betoniert werden.
- Sind Fundamente schon betoniert worden, muss seitlich als Schutz angeschüttet werden.

4 Straßenaufbau nach Straßenbaurichtlinien

Der Straßenaufbau sollte aus einem frostsicheren Straßenoberbau bestehen, der auf einem ausreichend tragfähigen Straßenplanum aufgebaut werden sollte. Für den Straßenbau sind die Vorgaben und Richtlinien u.a. der RStO 12 und der ZTV E-StB 09 maßgeblich. Als Randbedingungen für die Herstellung des frostsicheren Straßenoberbaus auf einem F1-, F2- oder F3-Untergrund sind hier anzusetzen:

- Die im Niveau des Erdplanums anstehenden, bindigen Böden sind sehr frostempfindliche Böden der Klasse F3 gemäß ZTV E-StB 09.
- Als vorläufige Belastungsklasse nach RStO 12 wird ein Bk1,8 bis Bk100 (Gewerbestraße) angenommen.

Nach Empfehlung der RStO 12 beträgt in der Bk1,8 der Ausgangswert des frostsicheren Straßenoberbaus 60 cm bei F3-Untergrund. Bk100 muss bei der Planung der Ausgangswert des frostsicheren Straßenoberbaus mit 65 cm eingerechnet werden. Aufgrund der Lage der Baustelle in der Frosteinwirkungszone III ist eine Mehrdicke von 15 cm gemäß Tab. 7 RStO 12 zu berücksichtigen, so dass der frostsichere Straßenoberbau

- in der Bk 1,8 mit d ≥ 75 cm bzw.
- in der **Bk 100** mit **d ≥ 80 cm** zu kalkulieren ist.

Seite 13 (von 16 Seiten)

Die zutreffende Belastungsklasse sowie ggf. weitere Mehr- oder Minderdicken z.B. gemäß Tab. 7 RStO 12 sind vom Straßenplaner aufgrund der spezifischen örtlichen Verhältnisse festzulegen und entsprechend zu berücksichtigen.

4.1 Verdichtung des Straßenplanums und der Kiestragschicht

Grundvoraussetzung für die Schadensfreiheit einer Straße ist der Nachweis der ausreichenden Verdichtung des Straßenplanums sowie der Frostschutz- und Tragschichten.

Für die Verdichtung des Erdplanums und des frostsicheren Oberbaus werden in Anlehnung an die Straßenbaurichtlinien folgende Verdichtungskriterien angesetzt:

• auf dem Erdplanum $E_{V2} \ge 45 \text{ MN/m}^2$

• auf OK Frostschutzschicht in der Belastungsklasse Bk 1,8-100 $E_{v2} \ge 120 \text{ MN/m}^2$

• auf OK Schotter-/Kiestragschicht in der Belastungsklasse Bk 1,8-100 $E_{V2} \ge 150 \text{ MN/m}^2$

4.2 Fazit Straßenaufbau

Die in den Bohrungen BS 5 und BS 6 (öffentliche Verkehrsfläche) angetroffenen, bindigen Böden sind, aufgrund des hohen Feinkornanteils, nicht für einen frostsicheren Straßenoberbau geeignet. Der aufgefüllte Kies und Schluff muss komplett bis - 1,05 m (- 0,75 m + 0,3 m) bei Bk 1,8 bzw. - 1,10 m (- 0,80 m + 0,3 m) bei Bk 100 ausgehoben werden. Aufgrund des angetroffenen, weichkonsistenten Schluffs im Planum, ist der zusätzliche Bodenaustauch von 30 cm notwendig, damit im Planum überhaupt ein Verformungsmodul von $E_{v2} \ge 45 \, \text{MN/m}^2$ erreicht wird. Der Gesamtaufbau würde damit in diesem Bereichen 1,05 m (Bk 1,8) bzw. 1,10 m (Bk 100) betragen. Um zu kontrollieren, ob im verbesserten Planum eine ausreichende Verdichtung erreicht werden kann, wäre ein Prüffeld angebracht.

Sollte auf OK Planum bereits der anstehende Kies angetroffen werden, ist bei ausreichender Verdichtung kein weiterer Bodenaustausch notwendig.

Zudem muss im Planum ein hochzugfestes Kombigitter (Geogitter mit Vlies > 250 g/m², GRK 5; z.B. Duogrid von Huesker oder Combigrid von Naue) verlegt werden, welches eine zusätzliche Stabilität liefert, ein Eindrücken der Kiessande in den weichen Untergrund vermeidet. Das Geogitter hat gegenüber dem Vlies eine höhere Durchstanzfestigkeit und erhöht die Flächenstabilität damit deutlich besser als ein Vlies. Die Bahnen sollten im Planum ausgelegt und jeweils 50 cm überlappt werden. Falls es doch noch zur Verlegung tiefer liegender Leitungen kommen wird, sollte anstatt des Geogitters mit Schroppen (kantige Steine mit Körnung ca. 60/250) gearbeitet werden, die nur mit der Baggerschaufel eingedrückt werden sollten, bis kein Eindrücken mehr möglich ist.

Seite 14 (von 16 Seiten)

Es ist zu beachten, dass der leichtplastische, schluffige Boden stark wasserempfindlich ist und bei Vernässung aufweicht und "matschig" wird. Erdplanien sind mit Gefälle zur Entwässerung anzulegen. Die Bauarbeiten sind abschnittsweise und nur bei günstiger Witterung auszuführen.

Auf dem Geogitter oder den Schroppen ist gut verdichtbarer Kies (Bodengruppe GW) bis in die Ebene UK frostsicherer Oberbau einzubauen. Die unterste Lage sollte, je nach Untergrund, nur statisch mit einer Walze, die nächsten Lagen am besten mit einer Rüttelplatte verdichtet werden. Die schlagende Verdichtung einer Rüttelplatte ist hier günstiger als die Schub erzeugende Wirkung einer Rüttelwalze.

Zuoberst ist ein frostsicherer Oberbau nach Straßenbaukriterien herzustellen.

5 Versickerung von Niederschlagswasser

Der Wasserdurchlässigkeitswert (k_f -Wert) des Kieses liegt nach Berechnungen aus der Siebanalyse nach DIN 18 123 bei k_f = 6,7 x 10⁻⁴ m/s (Anlage 5.1). Die beiden anderen Siebungen (Anlage 5.2-3) sind zu wasserdurchlässig und zeigen keine Reinigungswirkung mehr. Falls so ein gut durchlässiger, feinkornarmer Kies angetroffen wird, sollte dieser mit etwa 20 % vermengt werden und anschließend sollte eine Siebung durchgeführt werden. Für den Kies der Siebung Anlage 5.1 kann mit dem Reduzierungsfaktor von 0,2 ein Rechenwert von kf = 1,3 x 10⁻⁴ m/s angesetzt werden. Die Gesamtfläche der an eine Versickerungseinrichtung angeschlossenen Dachfläche ist durch einen TGA-Planer zu bestimmen. Für die überschlägige Berechnung möglicher Varianten wurde eine oberirdisch versiegelte Fläche von 500 m² angenommen (Anlage 7).

Bei den Dachflächen sollten als Vorreinigungsanlage Siebe oder Körbe zum Grobstoffrückhalt eingebaut werden. Ferner sollte eine Absetzeinrichtung für die mitgeführten absetzbaren Stoffe vorgeschaltet werden. Bei der baulichen Ausführung ist auf einen gleichmäßigen – auf die gesamte Länge verteilten – Wassereintritt zu achten. Aufgrund der in den letzten Jahren zunehmenden Zahl an Starkniederschlägen und extremen Wetterereignissen empfehlen wir die Kapazität der Versickerungsanlagen um 20 % zu erhöhen.

Als Versickerungsmöglichkeiten kommen hier alle Versickerungssysteme. Beispielhaft wurde eine Rohrrigolen- und eine Muldenversickerung berechnet.

Bei der <u>Rohrrigolenversickerung</u> (Anlage 7.1) wird das Niederschlagswasser über einen kiesgefüllten Graben geleitet und dort zwischengespeichert und zeitlich verzögert versickert. Vlies und Abstand sind - wie oben beschrieben - zu handhaben. Wollte man das anfallende Wasser einer 500 m² großen Fläche mittels Rohrrigole versickern, wäre die Rigole ca. 11,5 m lang, 2,0 m breit und 2,5 m tief (bei einem Einlauf in 1,0 m Tiefe).

Ferner könnte auch über eine <u>Mulde</u> versickert werden (Anlage 7.2). Für eine 500 m³ große angeschlossenen Fläche wird ein Flächenbedarf von 50 m² benötigt. Die oberen 20 cm der

Seite 15 (von 16 Seiten)

Mulde sollten mit einem Muldensubstart (stark sandiger Oberboden) ausgekleidet werden. In der Mulde, die geometrisch variabel ist, sollte sich das Wasser nicht höher als 30 cm einstauen. Für Planung, Bau und Betrieb der Versickerungsanlagen sind die Merkblätter DWA-A 138 und M-153 heranzuziehen. Bei den Versickerungseinrichtungen sind sämtliche bindigen Böden aus der Sohle und im Versickerungskegel zu entfernen.

6 Zusammenfassung

Auf dem Grundstück südlich der Ettaler Straße in Oberau ist eine neue gewerbliche Baufläche geplant. Wir wurden durch die Gemeinde Oberau mit der Erstellung eines ingenieurgeologischen Baugrundgutachtens für mögliche Neubauten sowie die öffentliche Verkehrsfläche beauftragt. Gemäß den eingemessenen Untersuchungspunkten hat das Gelände eine Höhenlage von ca. 678,2 mNN im Südosten bis 683,9 mNN im Nordwesten (Differenz 5,7 m).

- <u>Untergrundverhältnisse</u>

Unter einer geringmächtigen Oberbodenschicht wurde bis zur maximalen Bohrendtiefe von 7,0 m ein schluffiger Kies angetroffen. Teilweise wird der Kies von einem kiesigen Schluff durchsetzt bzw. überlagert. Lokal (DPH 1) reichen die Lehme bis 4,6 m Tiefe.

- Grundwasser

Grund- bzw. Schichtwasser wurde in den Bohrungen nicht angetroffen. In einer direkt südlich gelegen Grundwassermessstelle wurde am 16.05.2017 ein Wasserspiegel bei 653,53 mNN eingemessen. Anhand Erfahrungswerten aus der Umgebung muss mit starken Grundwasserschwankungen und einem maximalen Grundwasserstand von etwa 660,0 mNN gerechnet werden. Das Grundwasser liegt jedoch immer noch ca. 20 m unter OK Gelände und ist für das Bauvorhaben somit nicht relevant.

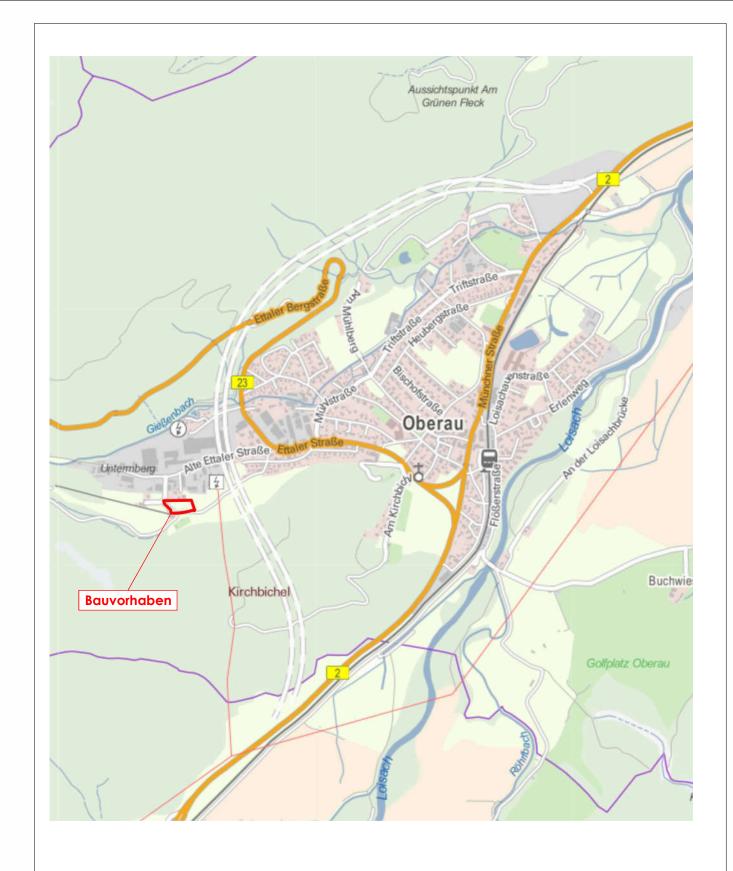
- <u>Baugrube</u>

Bei einfach unterkellerten Gebäuden wird die Baugrube wird ca. 3,5 m tief und kann frei abgeböscht werden. Der Böschungswinkel sollte in den Schluffen und Kiesen bei 45° belassen werden. Auf ausreichende Mindestabstand von 2 m bei der Lasteinleitung im Bereich der Böschungen ist zu achten. Ist aus Platzgründen keine Böschung möglich, könnte zur Baugrubensicherung ein Bohlträgerverbau (Berliner Verbau) erfolgen.

- Gründungsempfehlungen

Bei den vorliegenden Verhältnissen können die Gebäude auf Streifen- bzw. Einzelfundamenten oder auf einer elastisch gebetteten Bodenplatte gegründet werden. Je nach Gründungstiefe und Untergrund kann auch eine Tiefgründung in Frage kommen.

- Versickerung


Als Versickerungsmöglichkeiten kommen hier alle Systeme in Frage. Als Rechenwert sollte ein kf-Wert von $1,3 \times 10^{-4}$ m/s verwendet werden.

Für weitere Fragen stehen wir gern zur Verfügung.

Starnberg, den 21.10.2017

N. Kampik, Dipl.-Geol. BDG

GHB Consult GmbH

Auftraggeber: Gemeinde Oberau Schmiedeweg 10 82496 Oberau

Projekt: BV Bebauungsplan "Südlich der Alten Ettaler Straße" Fl.-Nr. 298, 298/12 + 332/4, Gemarkung Oberau

82496 Oberau

170417

Planbezeichnung: Übersichtslageplan

GHB Consult GmbH

N. Kampik, Dipl.-Geol.

Moosstraße 7

82319 Starmberg

Tel.: 08151 / 656 88 0

Fax: 08151 / 656 88 99

GEO

HYDRO

HYDRO

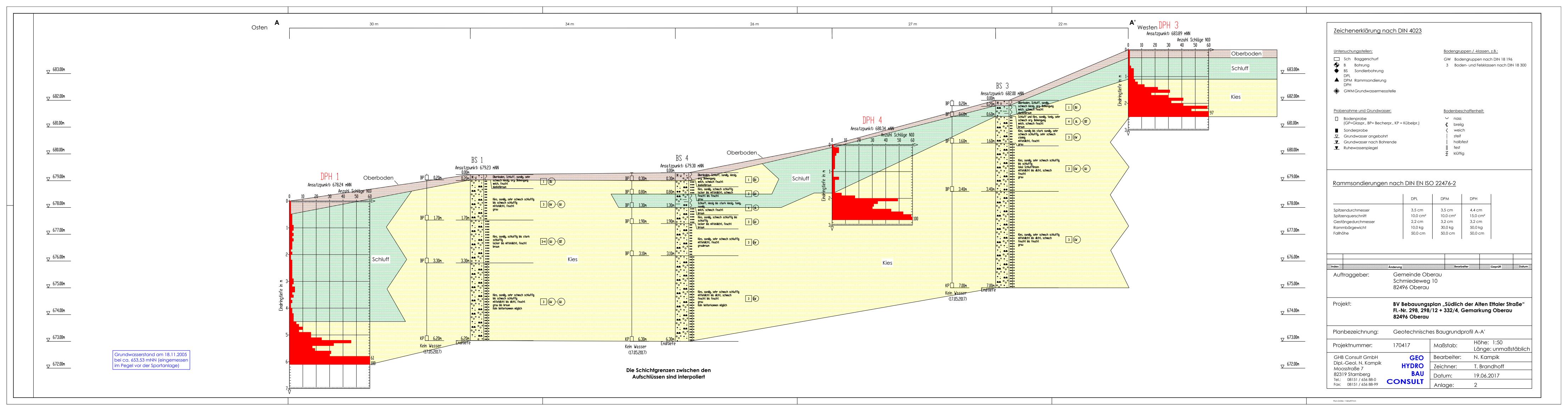
BAU

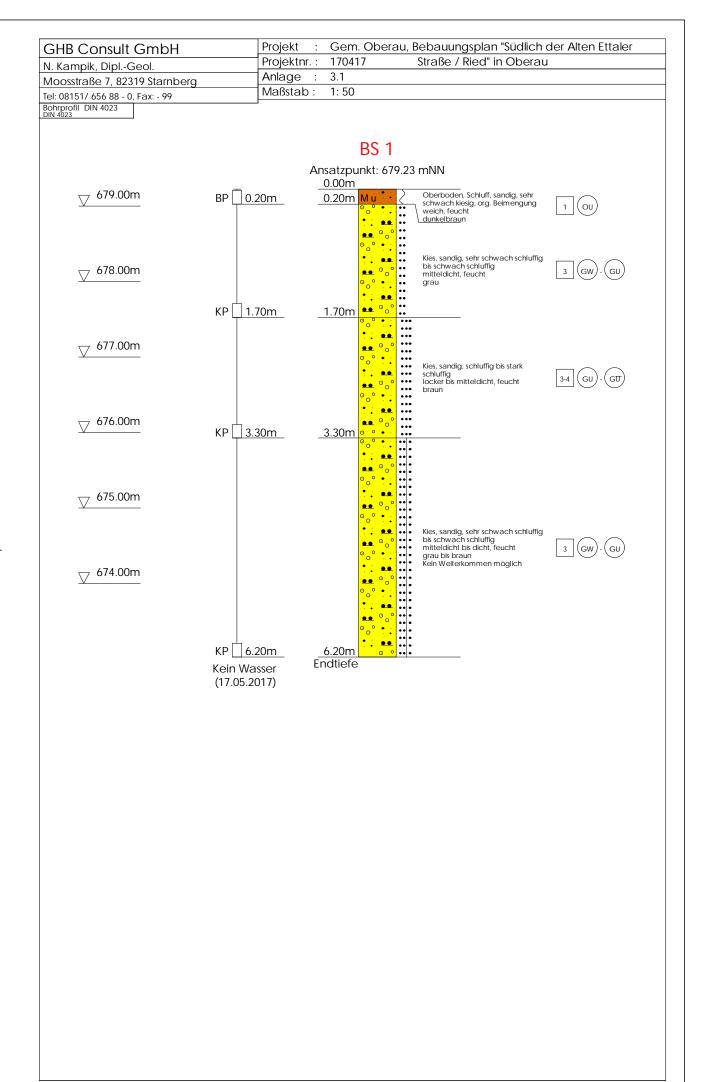
CONSULT

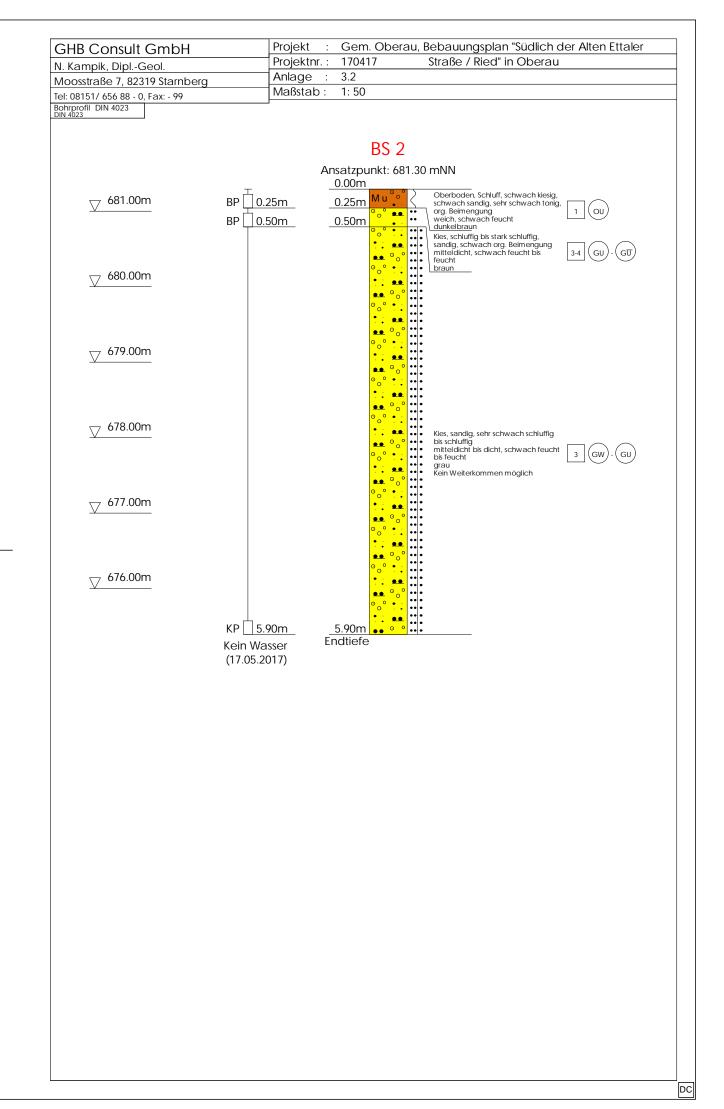
Maßstab: unmaßstäblich

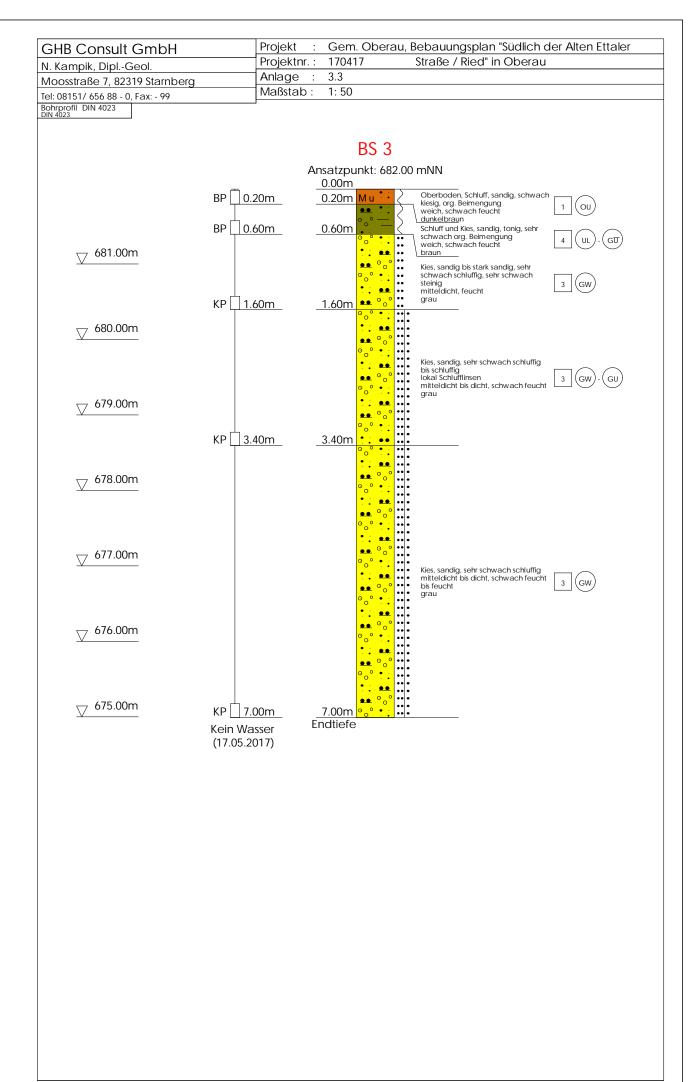
Bearbeiter: N. Kampik

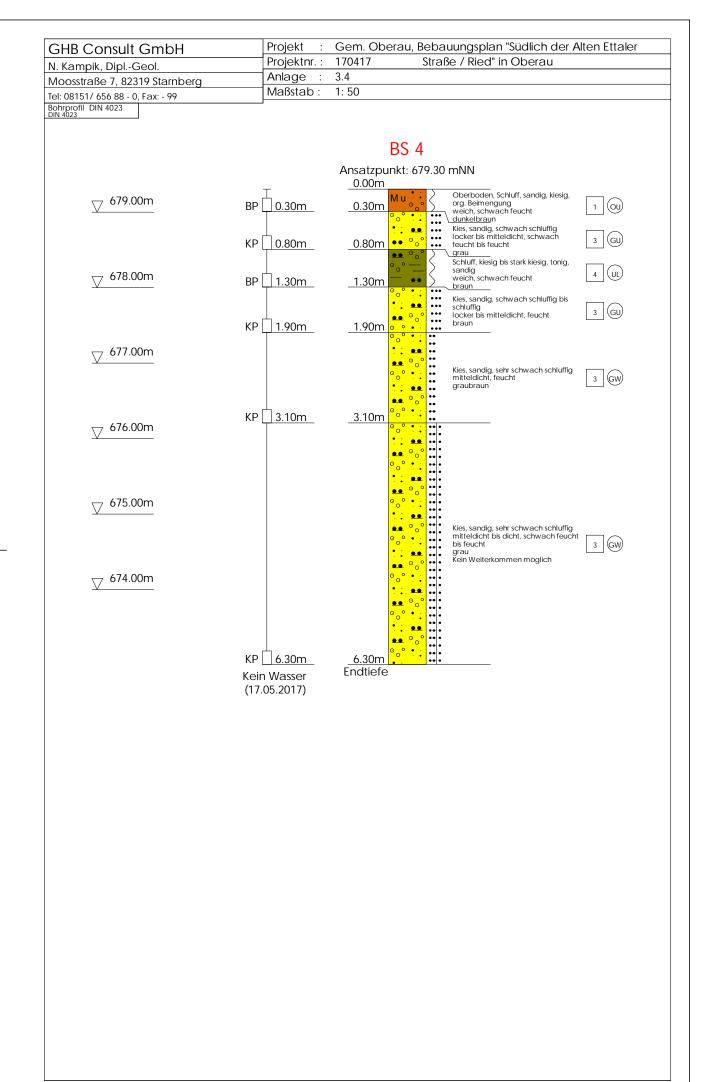
Zeichner: T. Brandhoff

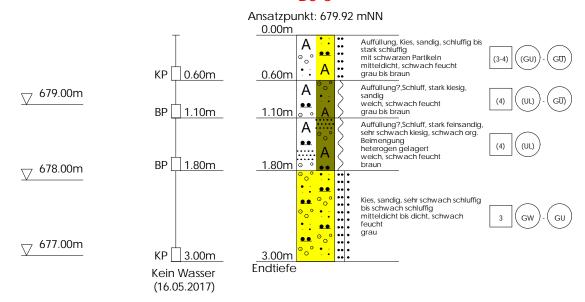

Datum: 19.06.2017


Anlage: 1.1


Projektnummer:

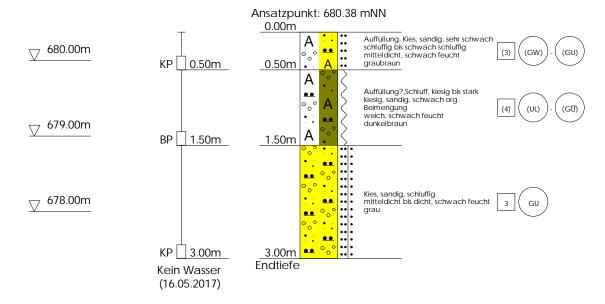



Plan-Größe: 210x297mm



GHB Consult GmbH	Projekt :	Gem. Oberau,	Bebauungsplan "Südlich der Alten Ettaler
N. Kampik, DiplGeol.	Projektnr.:	170417	Straße / Ried" in Oberau
Moosstraße 7, 82319 Starnberg	Anlage :	3.5	
Tel: 08151/ 656 88 - 0, Fax: - 99	Maßstab:	1: 50	
Toll do to the doc do diff data in the			

Bohrprofil DIN 4023 DIN 4023

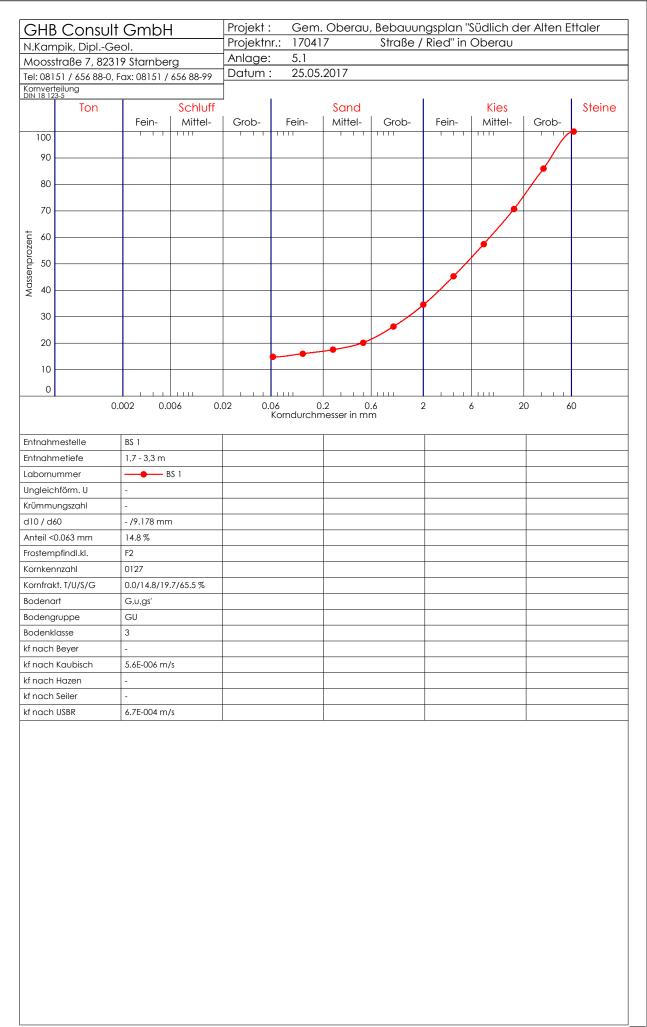

BS 5

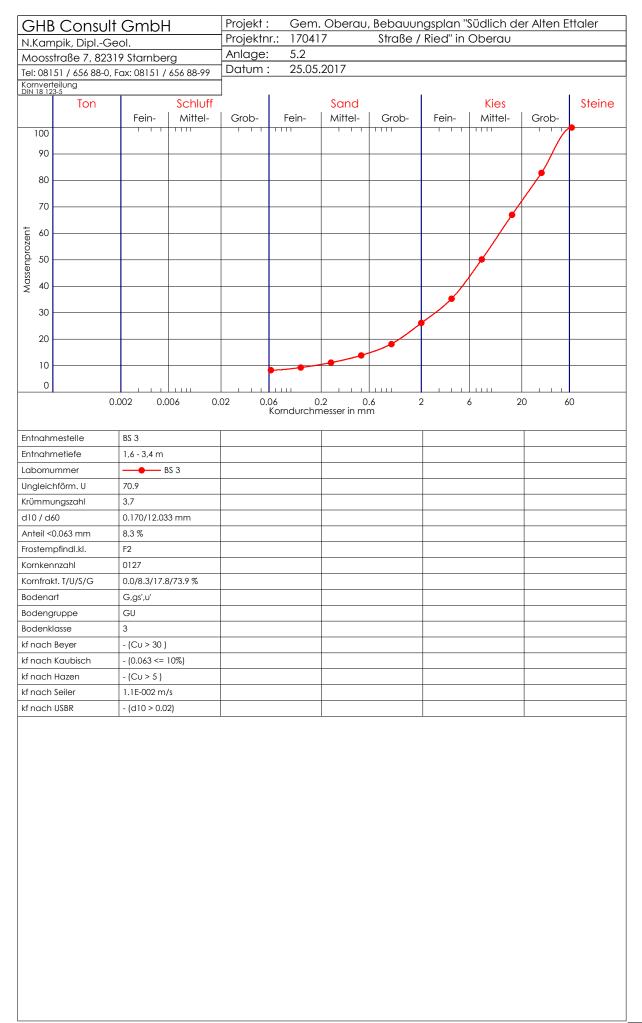
GHB Consult GmbH	Projekt :	Gem. Oberau, Bebauungsplan "Südlich der Alten Ettaler
N. Kampik, DiplGeol.	Projektnr.:	170417 Straße / Ried" in Oberau
Moosstraße 7, 82319 Starnberg	Anlage :	3.6
Tel: 08151/ 656 88 - 0, Fax: - 99	Maßstab:	1: 50
161: 08151/ 050 88 - U, FAX: - 99		

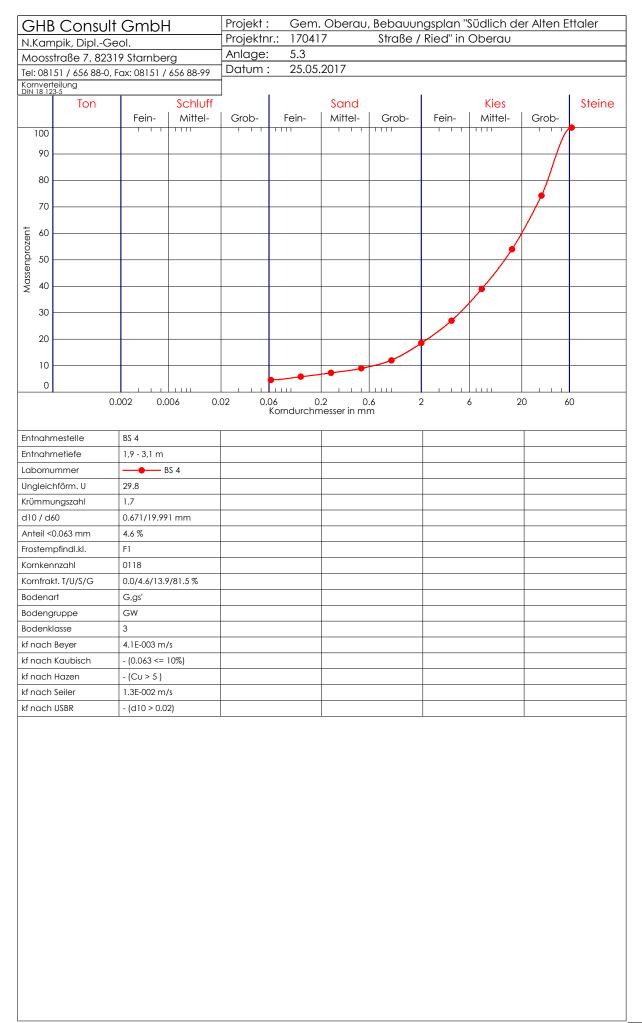
Bohrprofil DIN 4023 DIN 4023

BS 6

GHB Con	sult Gr	mbH		Projekt:	Gem. Oberau, Bebauungsplan "Südlich der Alten Ettaler
N. Kampik,				Projektnr.: Anlage:	.: 170417 Straße / Ried" in Oberau 4.1
Moosstraße			nberg	Datum:	16.05.2017
Rammsondieru FN ISO 22476-2	ng EN ISC	x: - 99) 22476-2	2	Maßstab:	
Tiefe N ₁₀		N ₁₀			
0.10 1	6.10	100			
0.20 1					DPH 1
0.30 1					Ansatzpunkt: 678.24 mNN
0.40 1 0.50 1					Anzahl Schläge N10
0.60 2	1				0 10 20 30 40 50 60
0.70 2			_▽ 678.	00m	
0.80 2					
0.90 2					
1.00 3					
1.10 3			_▽ 677.	00m	1-
1.30 3					
1.40 2					
1.50 3					
1.60 2			_▽ 676.	00m	2
1.70 2					
1.90 1					
2.00 2					
2.10 1			_▽ 675.	00m	Eindringtiefe in 4
2.20 1 2.30 2					<u> </u>
2.40 2				=	et e
2.50 2				:	din
2.60 2			▽ 674.	00m i	£ 4
2.70 2					
2.80 2 2.90 2					
3.00 3					
3.10 3			_▽ 673.	00m	5-
3.20 2					
3.30 4 3.40 4					
3.50 2					61
3.60 3			_▽ 672.	00m	6-
3.70 1					<u> </u>
3.80 2					
3.90 1 4.00 1					_
4 .10 2					7 🗸
4.20 2					
4.30 3					
4.40 3 4.50 3					
4.60 5					
4.70 7					
4.80 10					
4.90 7					
5.00 16 5.10 16					
5.20 24					
5.30 46					
5.40 33					
5.50 17					
5.60 19 5.70 31					
5.80 30					
5.90 61					
6.00 97					

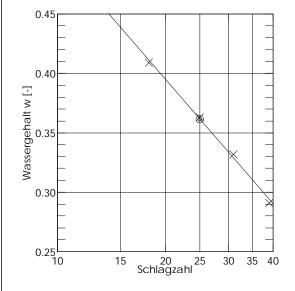

GHB Consult GmbH N. Kampik, DiplGeol.	Projekt: Gem. Oberau, Bebauungsplan "Südlich der Alten Ettaler Projektnr.: 170417 Straße / Ried" in Oberau
Moosstraße 7, 82319 Starnberg	Anlage: 4.2
Tel: 08151/ 656 88 - 0, Fax: - 99	Datum: 16.05.2017
Rammsondierung EN ISO 22476-2 FN ISO 22476-2	Maßstab: 1:50
Tiefe N ₁₀	
0.10 1	DDITO
0.20 1	DPH 2
0.30 1	Ansatzpunkt: 680.74 mNN
0.40 1	
0.50 1	Anzahl Schläge N10
0.60 1	0 10 20 30 40 50 60 0
0.70 2	
0.80 3	
0.90 1	
1.00 2	- 📙 📋
1.10 3	1
1.20 3	
1.30 3	
1.40 4 679.00m	E
1.50 4	- ·= 0 - - - -
1.60 7	
1.70 14	0
1.80 14	Eindring tie fe in a state of the state of t
1.90 19 $_{\bigcirc}$ 678.00m	iii oo
2.00 21	
2.10 27	3-
2.20 40	- - -
2 30 42	
2.40 42 677.00m	
2.50 63	-
2.60 44	4
2.70 49	4 🗸
2.90 22	
3.00 68	
3.10 100	
- 	
	

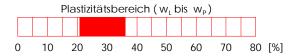

GHB Consult GmbH	Projekt: Gem. Oberau, Bebauungsplan "Südlich der Alten Ettaler
I. Kampik, DiplGeol.	Projektnr.: 170417 Straße / Ried" in Oberau
Moosstraße 7, 82319 Starnberg	Anlage: 4.3
Tel: 08151/65688 - 0, Fax: - 99	Datum: 16.05.2017
Rammsondierung EN ISO 22476-2 FN ISO 22476-2	Maßstab: 1:50
Tiefe N ₁₀	
0.10 1	
0.20 1	DPH 3
0.30 1	
0.40 1	Ansatzpunkt: 683.89 mNN
0.50 1	Anzahl Schläge N10
0.60 1	0 10 20 30 40 50 60 0 ⊳
0.70 2	
0.80 4	
0.90 4	
1.00 4	0m <u> </u>
1.10 4	E 1-
1.20 5	. <u>.</u>
1.30 7	$\frac{1}{2}$
1.40 12	
1.50 22	<u> </u>
1.60 31	Om Lipu 2-
1.70 17	97
1.80 30	7/
1.90 41 2.00 32	0m
2.00 32 2.10 41	3
2.10 41 2.20 59	3 1
2.30 47	
2.40 97	
2.50 100	
2.00	
	
	


DC

GHB Consult GmbH	Projekt: Gem. Oberau, Bebauungsplan "Südlich der Alten Ettaler Projektnr.: 170417 Straße / Ried" in Oberau
N. Kampik, DiplGeol.	Anlage: 4.4
Moosstraße 7, 82319 Starnberg	Datum: 16.05.2017
Tel: 08151/ 656 88 - 0, Fax: - 99 Rammsondierung EN ISO 22476-2 EN ISO 22476-2	Maßstab: 1:50
	Massas . 1.00
Tiefe N ₁₀	
0.10 1	DDI A
0.20 5	DPH 4
0.30 5	Ansatzpunkt: 680.34 mNN
0.40 3	Anzahl Schläge N10
0.50 2	0 10 20 30 40 50 60
0.60 2	0 10 20 30 40 30 00 0
0.70 2	
0.00 2	- [
0.90 2	
1.00 1	
1.10 1	E 1
1.20 1 V 679.00m	<u>.</u>
1.30 5	- 💆 🦵
1.40 2	`
1.50 2	·
1.60 2	Ein dringtie in dr
1.70 2	<u> </u>
1.80 2	
1.90 7	
2.00 17	100
2.10 49	3 1
2.20 34	V
2.30 31	
2.40 30	
2.50 44	
2.60 53	
2.70 59	
2.80 100	
 	

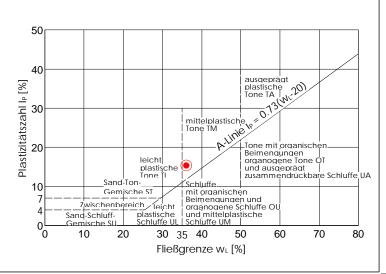
DC





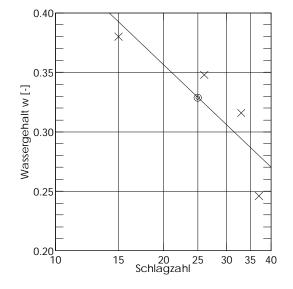
GHB Consult GmbH	Projekt	: Gem. Oberau, Bebauungsplan "Südlich der Alten Ettaler
N.Kampik, DiplGeol.	Projektnr.	: 170417 Straße / Ried" in Oberau
Moosstraße 7, 82319 Starnberg	Anlage	: 6.1
Tel:(08151) 656 88-0, Fax: 656 88-99	Datum	: 24.05.2017
Zustandsgranzan	Labornummer	: BS 4
Zustandsgrenzen	Tiefe	: 0,8 - 1,3 m
DIN 18 122	Bodengruppe	: TL
Entnahmestelle : BS 4	Art der Entn.	: gestört
Ausgef. durch : Seebauer	Entn. am	: 17.05.2017

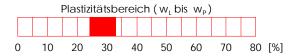
	Fließgrenze			Ausrollgrenze						
	18	25	31	39						
$m_f + m_B [g]$	142.08	135.62	139.38	133.27		125.91	130.14	122.31		
$m_t + m_B [g]$	116.63	113.84	118.07	115.52		113.37	117.58	110.15		
m _B [g]	54.33	53.86	53.96	54.52		53.62	54.29	54.19		
$_{f}$ - m_{t} = m_{w} [g]	25.45	21.78	21.31	17.75		12.54	12.56	12.16		
m _t [g]	62.30	59.98	64.11	61.00		59.75	63.29	55.96	Mittel	
[-]	0.409	0.363	0.332	0.291		0.210	0.198	0.217	0.208	
	$m_{t} + m_{B}$ [g] m_{B} [g] $r - m_{t} = m_{w}$ [g] m_{t} [g]	$m_f + m_B$ [g] 142.08 $m_t + m_B$ [g] 116.63 m_B [g] 54.33 $m_t - m_t = m_w$ [g] 25.45 m_t [g] 62.30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							



Plastizitätszahl $I_p = w_L - w_p = 0.153$

 $Liquidit \"{a}ts index \ I_L = \frac{W_N - W_P}{I_p} = 0.366$

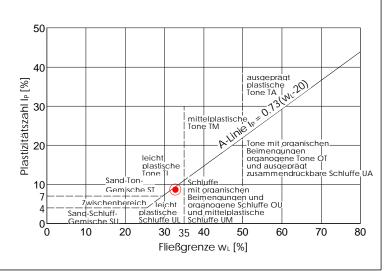

 $Konsistenzzahl \quad I_C = \frac{W_L - W_N}{I_p} = 0.634$



GHB Consult GmbH	Projekt	Projekt : Gem. Oberau, Bebauungsplan "Südlich der Alten Ettaler				
N.Kampik, DiplGeol.	Projektnr.	: 170417 Straße / Ried" in Oberau				
Moosstraße 7, 82319 Starnberg	Anlage	: 6.2				
Tel:(08151) 656 88-0, Fax: 656 88-99	Datum	: 24.05.2017				
Zustandsgrenzen	Labornummer	: BS 5				
1	Tiefe	: 0,6 - 1,1 m				
DIN 18 122	Bodengruppe	: UL				
Entnahmestelle : BS 5	Art der Entn.	: gestört				
Ausgef. durch : Seebauer	Entn. am	: 16.05.2017				

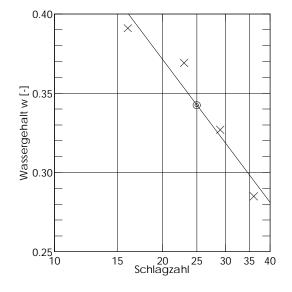
	Fließgrenze			Ausrollgrenze						
	15	26	33	37						
n _f + m _B [g]	128.39	141.25	132.36	127.28		120.08	129.64	124.81		
n _t + m _B [g]	108.07	118.62	113.58	112.83		107.03	114.55	111.71		
m _B [g]	54.61	53.52	54.22	53.98		54.42	54.07	54.20		
$n_t = m_w [g]$	20.32	22.63	18.78	14.45		13.05	15.09	13.10		
m _t [g]	53.46	65.10	59.36	58.85		52.61	60.48	57.51	Mittel	
[-]	0.380	0.348	0.316	0.246		0.248	0.250	0.228	0.242	
	$m_{t} + m_{B} [g]$ $m_{B} [g]$ $m_{t} = m_{w} [g]$ $m_{t} [g]$	$m_f + m_B$ [g] 128.39 $m_t + m_B$ [g] 108.07 m_B [g] 54.61 $m_t = m_w$ [g] 20.32 m_t [g] 53.46	15 26 n _f + m _B [g] 128.39 141.25 n _t + m _B [g] 108.07 118.62 m _B [g] 54.61 53.52 n _t = m _w [g] 20.32 22.63 m _t [g] 53.46 65.10	15 26 33 n _f + m _B [g] 128.39 141.25 132.36 n _t + m _B [g] 108.07 118.62 113.58 m _B [g] 54.61 53.52 54.22 n _t = m _w [g] 20.32 22.63 18.78 m _t [g] 53.46 65.10 59.36	15 26 33 37 n _f + m _B [g] 128.39 141.25 132.36 127.28 n _t + m _B [g] 108.07 118.62 113.58 112.83 m _B [g] 54.61 53.52 54.22 53.98 n _t = m _w [g] 20.32 22.63 18.78 14.45 m _t [g] 53.46 65.10 59.36 58.85	15 26 33 37 $m_f + m_B$ [g] 128.39 141.25 132.36 127.28 $m_t + m_B$ [g] 108.07 118.62 113.58 112.83 m_B [g] 54.61 53.52 54.22 53.98 $m_t = m_w$ [g] 20.32 22.63 18.78 14.45 m_t [g] 53.46 65.10 59.36 58.85	15 26 33 37 120.08 n _f + m _B [g] 128.39 141.25 132.36 127.28 120.08 n _t + m _B [g] 108.07 118.62 113.58 112.83 107.03 m _B [g] 54.61 53.52 54.22 53.98 54.42 n _t = m _w [g] 20.32 22.63 18.78 14.45 13.05 m _t [g] 53.46 65.10 59.36 58.85 52.61	15 26 33 37 120.08 129.64 n _t + m _B [g] 128.39 141.25 132.36 127.28 120.08 129.64 n _t + m _B [g] 108.07 118.62 113.58 112.83 107.03 114.55 m _B [g] 54.61 53.52 54.22 53.98 54.42 54.07 n _t = m _w [g] 20.32 22.63 18.78 14.45 13.05 15.09 m _t [g] 53.46 65.10 59.36 58.85 52.61 60.48	15 26 33 37 120.08 129.64 124.81 12.83 107.03 114.55 111.71 12 m _B [g] 54.61 53.52 54.22 53.98 54.42 54.07 54.20 12.94 [g] 53.46 65.10 59.36 58.85 52.61 60.48 57.51	15 26 33 37

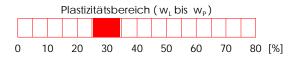
Wassergehalt $W_N = 0.273$ Fließgrenze $W_L = 0.329$ Ausrollgrenze $W_P = 0.242$



Plastizitätszahl $I_p = W_L - W_P = 0.087$

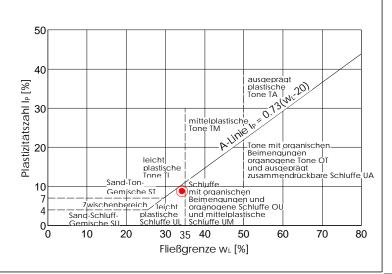
 $Liquidit \"{a}ts index \ I_L = \frac{W_N - W_P}{I_p} = 0.356$


 $Konsistenzzahl \quad I_C = \frac{W_L - W_N}{I_p} = 0.644$



GHB Consult GmbH	Projekt	Projekt : Gem. Oberau, Bebauungsplan "Südlich der Alten Ettaler				
N.Kampik, DiplGeol.	Projektnr.	: 170417 Straße / Ried" in Oberau				
Moosstraße 7, 82319 Starnberg	Anlage	: 6.3				
Tel:(08151) 656 88-0, Fax: 656 88-99	Datum	: 24.05.2017				
Zustandsgrenzen	Labornummer	: BS 6				
DIN 18 122	Tiefe	: 0,5 - 1,5 m				
DIN 18 122	Bodengruppe	: UL				
Entnahmestelle : BS 6	Art der Entn.	: gestört				
Ausgef. durch : Seebauer	Entn. am	: 16.05.2017				

		Fließgrenze			Ausrollgrenze						
Behälter-Nr.											
Zahl der Schläge		16	23	29	36						
Feuchte Probe + Behälter	m _f + m _B [g]	136.31	133.62	125.28	138.05		131.27	124.73	125.39		
Trockene Probe + Behälter	m _t + m _B [g]	113.28	112.08	107.69	119.42		115.56	110.02	111.50		
Behälter	m _B [g]	54.45	53.69	53.86	54.16		54.21	54.33	53.78		
Wasser m _f	$-m_t = m_w [g]$	23.03	21.54	17.59	18.63		15.71	14.71	13.89		
Trockene Probe	m _t [g]	58.83	58.39	53.83	65.26		61.35	55.69	57.72	Mittel	
Wassergehalt $\frac{m_w}{m_t}$ = w	[-]	0.391	0.369	0.327	0.285		0.256	0.264	0.241	0.254	



Plastizitätszahl $I_p = W_L - W_p = 0.088$

 $Liquidit \"{a}ts index \ I_L = \frac{W_N - W_P}{I_p} = 0.375$

 $KonsistenzzahI \quad I_C = \frac{W_L - W_N}{I_p} \quad = \quad 0.625$

GHB Consult GmbH Moosstr. 7 82319 Starnberg Tel.: 08151 / 656 88-0

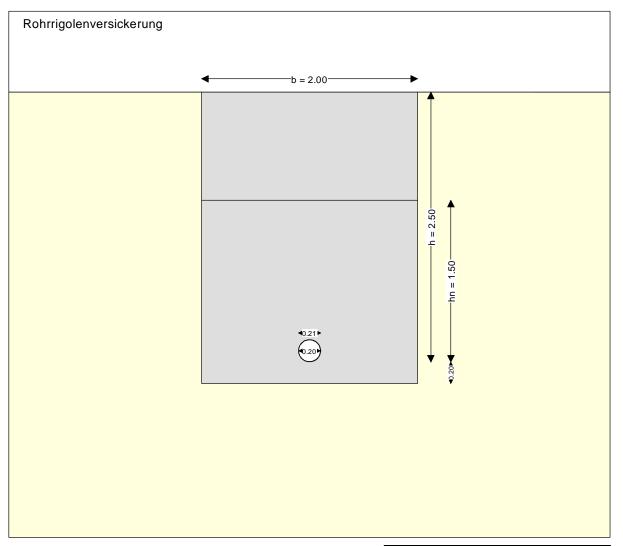
Gem. Oberau, Bebauungsplan

südl. der Alten Ettaler Straße

Bericht Nr.

170417

Anlage Nr.


7.1

Versickerung nach ATV A-138 (Januar 2002)

Gem. Oberau "südl. Alte Ettaler Straße" Rohrrigolenversickerung Durchlässigkeit = 1.300 · 10⁻⁴ m/s Grundwasserflurabstand = 15.00 m Zuschlagsfaktor = 1.20 Häufigkeit n [1/a] = 0.200 5-jährige Überschreitungshäufigkeit

 $A(u) = 500.0 \text{ m}^2$ Zulässiger Abstand UK Anlage - GW = 1.00 m Lichte Weite des Rohres = 0.20 m Dicke des Rohres = 0.003 m Sohlbreite der Rigole b = 2.00 m Höhe der Rigole h = 2.50 m Max. Wasserstand Rigole = 1.00 m

Nutzbare Höhe der Rigole hn = 1.50 mSpeicherkoeffizient s = 0.300Speicherkoeff. (umgerechnet) = 0.307Versickerung nur über Sohle

Ergebnis Erforderliche Rohrrigolenlänge = 11.49 m Erforderliches Speichervolumen = 10.58 m³ Maßgebende Regendauer = 45.0 Minuten Regenspende = 95.2 Liter/(sec·ha)

Oberau, Loisach					
D	r _{D(0.2)} [l/(s⋅ha)]	L [m]			
5 min	291.6	5.42			
10 min	221.3	7.85			
15 min	182.5	9.28			
20 min	156.7	10.18			
30 min	123.6	11.11			
45 min	95.2	11.49			
60 min	78.2	11.39			
90 min	60.4	11.10			
2 h	50.3	10.63			
3 h	38.8	9.65			
4 h	32.3	8.81			
6 h	25.0	7.55			
9 h	19.3	6.28			
12 h	16.1	5.45			
18 h	12.7	4.48			
24 h	11.0	3.96			
48 h	7.7	2.86			
72 h	5.2	1.96			

GHB Consult GmbH Moosstr. 7 82319 Starnberg Tel.: 08151 / 656 88-0

Gem. Oberau, Bebauungsplan

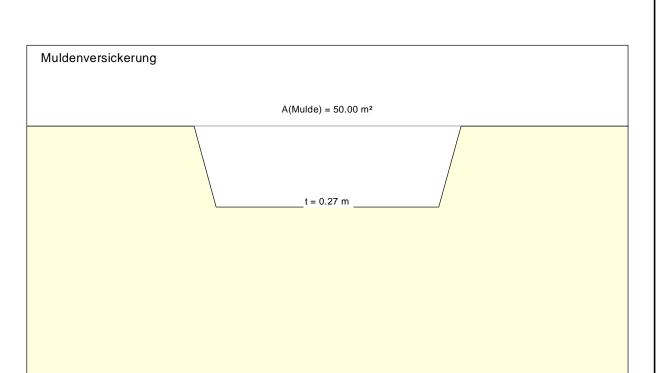
südl. der Alten Ettaler Straße

Bericht Nr.

170417

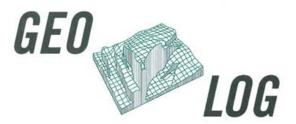
Anlage Nr.

7.2


Versickerung nach ATV A-138 (Januar 2002)

Gem. Oberau "südl. Alte Ettaler Straße" Muldenversickerung Durchlässigkeit = $5.000 \cdot 10^{-5}$ m/s Grundwasserflurabstand = 15.00 m

Zuschlagsfaktor = 1.20 Häufigkeit n [1/a] = 0.200 5-jährige Überschreitungshäufigkeit $A(u) = 500.0 \text{ m}^2$


Zulässiger Abstand UK Anlage - GW = 1.00 m

Vorh. Versickerungsfläche = 50.0 m²

Ergebnis Erforderliche Muldentiefe = 0.27 m Erforderliches Speichervolumen = 13.43 m³ Maßgebende Regendauer = 90.0 Minuten Regenspende = 60.4 Liter/(sec·ha)

	Oberau, Loisach	
D	r _{D(0.2)} [l/(s·ha)]	V [m³]
5 min	291.6	5.32
10 min	221.3	7.86
15 min	182.5	9.49
20 min	156.7	10.61
30 min	123.6	11.98
45 min	95.2	12.91
60 min	78.2	13.18
90 min	60.4	13.43
2 h	50.3	13.10
3 h	38.8	11.46
4 h	32.3	9.10
6 h	25.0	3.24
9 h	19.3	-7.33
12 h	16.1	-18.90
18 h	12.7	-42.88
24 h	11.0	-66.87
48 h	7.7	-171.38
72 h	5.2	-299.84

Ingenieurbüro für Geophysik und Geologie

- Kampfmittelerkundung
- Bauwerksuntersuchung
- Erschütterungsmessung
- Geophysikalische Messungen

Archäologie Lagerstättenprospektion Grundwassererschließung Leitungsortung

GEOLOG Fuß-Hepp GbR Glatzer Straße 5a D-82319 Starnberg

GHB Consult GmbH Zu Hd.Herr Kampik Moosstraße 7 82319 Starnberg

Ihre Zeichen

Ihre Nachricht vom

Ihre Tel.:

Ihre Fax.:

Durchwahl 08151/28070 Unser Zeichen

Starnberg, den 19.05.2017

Kampfmitteluntersuchung von Bohransatzpunkten BV Alte Ettaler Straße, Oberau

Sehr geehrter Herr Kampik,

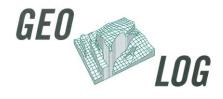
anbei der Bericht zu oben genanntem Bauvorhaben.

Für Rückfragen stehen wir jederzeit zur Verfügung.

Mit freundlichen Grüßen

V. Wisolf - Ha

Katrin Wirsching-Hepp M.Sc. Geologie



Untersuchungsbericht

zur

Kampfmitteluntersuchung von Bohransatzpunkten BV Alte Ettaler Straße, Oberau

Auftrag	Bearbeitung
<u>Auftraggeber</u>	K. Wirsching-Hepp
GHB Consult GmbH	Waldschmidtstraße 8b
Herr Kampik Moosstraße 7 82319 Starnberg	82319 Starnberg Tel.: 0177 4649777
Do a hala a	E-Mail: <u>katrin.hepp@web.de</u>
Bauvorhaben BV Alte Ettaler Straße, Oberau	Datum: 19.05.2017

Inhaltsverzeichnis

Inhaltsverzeichnis	2
Angewandte Messverfahren:	3
Untersuchungen mittels Georadar:	
Anlage 1 – Fotodokumentation	
4111agc I [—] FULUUUKUITIEHLALIUH	

Im Auftrag der GHB Consult GmbH (Hr. Kampik) wurden zum Bauvorhaben Hauptstraße 12 in Starnberg Bohransatzpunkte mit Georadar Verfahren untersucht.

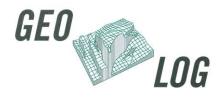
Die Messungen fanden am 12.05.2017 statt. Die Lage der zu erkundenden Bohransatzpunkte wurde vor Ort von Herrn Reimer (GHB Consult) festgelegt und gekennzeichnet. Die Messungen dienten der Detektion möglicher Kampfmittel im Vorfeld der Eingriffe in den Untergrund. Die Sondierung umfasste:

• 10 Bohransatzpunkte (6 x BS und 4 x DPH)

In Bereichen, in welchen durch die Messungen der Kampfmittelverdacht nicht restlos ausgeräumt werden konnte, wurden einzelne Bohransatzpunkte in Absprache mit den Vertretern der GHB Consult vor Ort verlegt. Die für die Bohrungen festgelegten Ansatzpunkte wurden mit Farbspray im Gelände markiert.

Die Kampfmittelfreigabe kann somit für die im Feld festgelegten Bohransatzpunkte erteilt werden.

Lage der Bohransatzpunkte

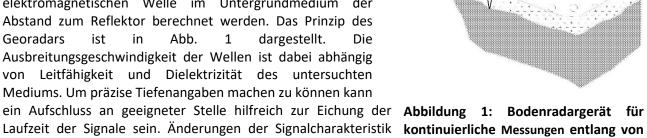

Die eingemessene Lage der Bohransatzpunkte ist in folgender Tabelle wiedergegeben. Die Bezeichnung der Punkte richtet sich nach Ihren Vorgaben (siehe Foto, Übersicht).

Job:Oberau,Version:2.50,Units:Metres
(ID,RW,HW)
BS 5, 5269134.754, 4434105.129, 679.922
BS 6, 5269135.596, 4434086.467, 680.378
DPH 4, 5269148.435, 4434088.305, 680.341
BS 3, 5269159.206, 4434063.896, 681.995
DPH 3, 5269177.203, 4434050.114, 683.893
BS 2, 5269176.336, 4434082.530, 681.295
DPH 2, 5269176.277, 4434108.475, 680.006
BS 1, 5269176.066, 4434142.238, 679.227
DPH 1, 5269148.805, 4434155.733, 678.238
BS 4, 5269158.954, 4434112.589, 679.304

Für Rückfragen stehen wir Ihnen jederzeit zur Verfügung. Starnberg, den 19.05.2017

Katrin Wirsching-Hepp M.Sc. Geologie

V. Wisely - Hay



Angewandte Messverfahren: Untersuchungen mittels Georadar:

Eine in der Geophysik häufige Aufgabenstellung ist die Ortung von unterirdischen Objekten (Blindgänger, Fässer, Kabel, Leitungen, Tunnel, Bunker, etc.) oder geologischen Strukturen (Hohlräume, Höhlen, Felsen, geologische Schichtwechsel, etc.). Das Radarverfahren wird als zerstörungsfreies Erkundungsverfahren in nahezu allen geologischen und baubezogenen Ingenieurwissenschaften zur Lösung spezieller Erkundungsprobleme eingesetzt. Durch geeignete Frequenzwahl des Sendesignals sind bei günstigen Umgebungsbedingungen Untersuchungen bis 20 m Bodentiefe möglich.

Das Georadar ist ein elektromagnetisches Reflexions-Verfahren, welches hochfrequente elektromagnetische Wellenimpulse über eine Sendeantenne senkrecht in den Untergrund abstrahlt. Durch Änderungen elektromagnetischen Eigenschaften im Boden oder Bauwerk (Diskontinuitäten), verursacht z.B. durch Schichtgrenzen bzw. Fremdkörpern (Leitungen, Altfundamente, etc.) werden Teile der Impulse reflektiert und an der Oberfläche mittels einer separaten Empfangsantenne aufgenommen. Aus der Messung der Laufzeiten kann bei Ausbreitungsgeschwindigkeit Kenntnis der elektromagnetischen Welle im Untergrundmedium der Abstand zum Reflektor berechnet werden. Das Prinzip des Georadars Abb. ist in 1 dargestellt. Ausbreitungsgeschwindigkeit der Wellen ist dabei abhängig von Leitfähigkeit und Dielektrizität des untersuchten Mediums. Um präzise Tiefenangaben machen zu können kann

Eigenschaften des durchstrahlten Mediums. Da die gewonnenen

erlauben zusätzlich Rückschlüsse auf die physikalischen Profilen. Eingesetzte Antenne 250 MHz.

Rohdaten schwer interpretierbar sind, werden zur besseren Darstellung Verfahren der digitalen Signalverarbeitung angewendet, deren Ergebnis das Radargramm ist. Die Auswertung der Messergebnisse erfordert trotz aller Filtermethoden spezielle Erfahrung und sollte nur von Sachkundigen vorgenommen werden.

Je nach Aufgabenstellung verwenden wir Antennen in verschiedenen Frequenzbereichen zwischen 50 MHz und 1,2 GHz. Frequenzen zwischen 25 MHz und 200 MHz erreichen je nach physikalischer Beschaffenheit des durchstrahlten Mediums Eindringtiefen bis 10 m, bieten aber relativ schlechte Auflösung im oberflächennahen Bereich. Im Gegensatz dazu erreicht man mit höheren Frequenzen (450 MHz bis 2 GHz) eine sehr gute Objekt-Auflösung, wobei die Erkundungstiefe stark abnimmt. Die Auswahl der geeigneten Frequenz ist immer ein Kompromiss zwischen Auflösung und Eindringtiefe.

Anlage 1 – Fotodokumentation 16.05.2017

Untersuchung der Bohransatzpunkte mittels Georadar

Übersicht der mit GPS eingemessenen Punkte

Projekt: Gem. Oberau, Bebauungsplan "Südlich der Alten Ettaler

Straße / Ried" in Oberau

Anlage: 9.1

Projektnr.: 170417

GHB Consult GmbH N. Kampik, Dipl.-Geol. Moosstraße 7
82319 Starnberg
Tel.: 08151 / 656 88 0
Fax: 08151 / 656 88 99

HYDRO
BAU
TONSULT

HYDRO

GEO

Foto 1

Foto 2

Gem. Oberau, Bebauungsplan "Südlich der Alten Ettaler <u>Projekt:</u>

Straße / Ried" in Oberau

9.2 **Anlage:**

Projektnr.: 170417

GHB Consult GmbH

N. Kampik, Dipl.-Geol.

Moosstraße 7

82319 Starnberg

Tel.: 08151 / 656 88 0

Fax: 08151 / 656 88 99

GEO

HYDRO

BAU

CONSULT

Foto 3

Foto 4